Smartphone Virtualization

Tzi-cker Chiueh Houcheng Lin

Ares Chao

Anthony Tan-Gen Wu

Industrial Technology Research Institute
tcc@itri.org.tw

Abstract—Virtualization plays a pivotal role in the success of
cloud computing service models and is applied extensively in
modern public and private data centers. However, its adoption
on end user devices such as laptop/desktop computers and cell
phones is relatively scarce, mainly because convincing use cases
for client device virtualization have proven elusive so far. As
smartphones emerge as the linchpin of everyday computing and
communication for regular people and application download be-
comes a fact of life, the Bring Your Own Cloud (BYOD) problem,
in which corporate employees connect their own smartphones to
the corporate networks for office work, has put most enterprises
in an unenvious position of making a difficult choice between
corporate security and employee productivity. One effective
solution to the BYOD problem is smartphone virtualization, which
provides multiple virtual smartphones on a physical smartphone,
and enables a user to use a highly secure but not so flexible
virtual smartphone in the work environment and a less secure
but more flexible virtual smartphone when outside the work
environment. This paper describes the design and implementation
of a comprehensive smartphone virtualization system called
Brahma, which consists of a virtualized smartphone element and a
virtual mobility infrastructure element, and presents the detailed
evaluation results of the first Brahma prototype on a commercial
smartphone.

Index Terms—Smartphone; virtualization; virtual mobility
infrastructure; sensor redirection; state isolation

I. INTRODUCTION

Virtualization instantiates multiple virtual devices, each with
a distinct personality, from a single physical device, which
could be a server, a storage appliance or a network of switches.
Hardware abstraction layer (HAL) virtualization enables mul-
tiple virtual machines to run on a single physical machine, and
opens up myriad optimization opportunities for modern data
centers that are designed to support cloud computing services,
such as thin provisioning, consolidation, load balancing, and
live upgrade and migration. Despite its enormous success in
data centers, application of HAL virtualization to end user
devices such as desktop/laptop computers and smartphones is
almost non-existent, because most of the virtualization benefits
in data centers cannot easily carry over to end user devices.
However, the situation is changing, and the catalyst is the
Bring Your Own Device (BYOD) problem.

As smartphones become the linchpin of everyday computing
and communication for most people in modern societies, it
is only natural that corporate employees choose to connect
their personal smartphones to their corporate networks when
they are in the office, and perform many workplace tasks right
from their smartphones. Connecting personal smartphones to
corporate networks in itself would not create any problems,

had these smartphones not been laden with software programs
with questionable quality and pedigrees. Unfortunately, most
people download applications to their smartphones all the time
and do so unscrupulously, and the majority of smartphones
today are not equipped with any anti-virus software that purges
malicious applications. As a result, the BYOD problem puts
corporations in a dilemma, which forces them to choose
between company security and employee productivity, an
impossible choice.

One way to solve the BYOD problem is to support multiple
contexts on a physical smartphone, where each context corre-
sponds to a specific use case. For example, one context could
be set up for conducting business tasks, another context could
be reserved for personal use like gaming or social network
interactions, and the third is for testing of unknown appli-
cations. Because different contexts serve different purposes,
they should be configured with different security policies and
privileges that match their intended use cases. For example,
only the business-use virtual smartphone is allowed to connect
to the corporate network and accordingly its security policy
should conform to the corporate security policy, whereas
the security policy of the personal-use virtual smartphone
could be more relaxed but it cannot be connected to the
corporate network. In addition to different security policies,
these smartphone contexts should also be isolated from one
another, in the sense that there is no easy way for programs
running in one context to read or write data or code belonging
to any other contexts running on the same smartphone. The
ITRI smartphone virtualization system, code-named Brahma,
is designed to provide multiple isolated contexts on modern
smartphones.

Brahma offers two mechanisms to support multiple usage
contexts on a smartphone: virtualized smartphone, which runs
an HAL hypervisor so as to enable multiple virtual smart-
phones to run concurrently on the physical smartphone, and
virtual mobility infrastructure (VMI), which runs, in a cloud-
based infrastructure, virtual machines whose inputs/outputs are
redirected to physical smartphones with which users interact
directly, and presents end users the illusion of using virtual
smartphones through their physical smartphones. Brahma ju-
diciously combines these two virtualization mechanisms in
order to provide the best user experience for different usage
scenarios. Although the two mechanisms are conceptually
different, their implementations are actually quite similar to
each other architecturally, and share a common set of technical
challenges as follows:

o The set of virtual smartphones with which the user di-
rectly interacts, be they running on a physical smartphone
or in the cloud, must be able to reliably and efficiently
receive the user’s inputs, e.g., touch and speech, and the
input values associated with the wide array of sensors
installed on the user’s physical smartphone, e.g., camera,
GPS, gyroscope, accelerometer, proximity sensor, and
magnetometer.

e The audio/video outputs of virtual smartphones with
which the user directly interacts, be they running on a
physical smartphone or in the cloud, must be fluently
delivered to the speaker and video display of the user’s
physical smartphone, respectively, without any adverse
impacts on user experiences.

o The virtualization overhead in the form of performance
penalty and additional resource usage at run time must be
kept to the minimum, especially when the set of virtual
smartphones running on a physical smartphone are based
on the same kernel and libraries.

The rest of this paper is organized as follows. Section 2
describes previous research and development efforts related
to virtualized smartphone and VMI. Section 3 provides an
introduction to the basis of Brahma’s development: Secure
Virtual Mobile Platform (SVMP) [13]] and Android x86 [2].
Section 4 and 5 detail the design and implementation of the
virtualized smartphone and the VMI, respectively. Section 6
presents the results of an evaluation study of the first Brahma
prototype, and their analysis. Section 7 concludes this paper
with the main research contributions of this work, and an
outline of the future work.

II. RELATED WORK

A standard solution to the smartphone security problem
is Mobile Device Management (MDM) [21]], which moni-
tors and controls the use of a smartphone phone remotely.
Howeyver, the inconvenience associated with MDM-enabled
smartphones triggers the BYOD problem in the first place.
The Cells project in Columbia University [15]] developed an
open-source solution that allows multiple virtual smartphones
to run on a single physical phone in an isolated manner. The
architecture of Cells allows only one virtual phone to run
in the foreground with other virtual smartphones running in
the background. This limitation arises from their integration
of a device namespace mechanism with device proxies as a
lighter-weight virtualization approach. The resulting prototype
supports fully accelerated 3D graphics, complete power man-
agement features, and caller ID, and imposes only modest
runtime and memory overhead. The technology has since been
licensed to a start-up, Cellrox.

In 2011, VMware introduced Mobile Virtual Platform
(MVP) [16]], a type 2 hypervisor for smartphones that enables
multiple OSes to be run on a single smartphone. Later that year
VMware acquired Trango, a French software company that had
created a type 1 smartphone hypervisor, which offers stronger
isolation, occupies only 20KB, and can be run from ROM.
The MVP hypervisor was later rebranded as VMware Horizon

Mobile [18]], which virtualizes the storage, networking and
telephony, and allows IT administrators to remotely manage
the phone such as wiping and locking the device when it
is lost, delivering application updates, adding or removing
applications, pushing down new templates, etc. MVP was
eventually shut down in 2014.

Samsung Software Laboratories developed an Xen-based
hypervisor for non-virtualizable ARM CPUs called Xen on
ARM [17]]. The main technical challenge of Xen on ARM
is to separate the address spaces of a guest OS and the
applications running on top of it because ARM CPU has
only one unprivileged mode. To solve this problem, Xen on
ARM split the user mode into two logical modes (user process
mode and kernel mode), and was responsible for properly
switching between the user process mode and the kernel mode.
The virtualization overhead of Xen on ARM was relatively
moderate. However, no complete virtualized smartphone based
on this hypervisor was built and demonstrated.

Agawi, previously known as iSwifter, developed a low-
latency app streaming technology [20] that enables users to
play games from the cloud on their smartphones. Such app
streaming technology is a critical building block for fluent
UI experiences in Virtual Mobile Infrastructure (VMI) VMI.
Google acquired Agawi in June 2015, and integrated this low-
latency streaming technology with its Deep Link technology
to allow its search engine to return search results that point to
apps and users can then click on these apps to look at their
contents through app streaming.

Android 5 (Lollipop) or newer versions support a multi-user
feature [10] that is meant to ameliorate the BYOD problem. It
includes a greatly improved Device Policy Manager with new
APIs in order to support corporate-wide security policies, e.g.,
app restrictions, silent installation of certificates, and cross-
profile sharing intent control [3]. Although downloading and
installing apps, setting wallpapers and arranging home screens
in one user account will not affect other user accounts, changes
to system settings, such as adding a Wi-Fi network, are applied
to all other user accounts on the device. Therefore, the inter-
user isolation of this multi-user implementation leaves much
to be desired.

Virtual desktop infrastructure (VDI) [12] is the practice of
hosting a desktop operating system within a virtual machine
(VM) that runs on a centralized server. Citrix, VMware and
Microsoft dominate the VDI market, because they provide
effective solutions to the following three problems: (1) How
to support video-based and graphics-based applications over
the network with low latency? Multimedia redirection [7] is
one such technology. (2) How to seamlessly relay client-side
hardware devices, e.g., USB devices, to the VMs running in
the cloud? (3) How to reduce the complexity of administering a
large number of largely identical VMs deployed in a VDI sys-
tem, e.g. applying a patch? Although there are a large number
of open-source VDI solutions such as the Red Hat Enterprise
Virtualization Manager for Desktops [9], they generally fare
worse in these three aspects, which are critical to corporate
users.

\A\‘“ SVMP
-~"| Client

VM1 /|
/ SVMP

SVMP Daemon
(_ SVMP Overseer
-. = Cllent Android
SVMP Framework
SVMP Server Linux Kernel
Cllent L 3 \ I
\| devices
.
.

VMn

Fig. 1: The system architecture of SVMP and its main compo-
nents: SVMP overseer, SVMP server, SVMP client, and SVMP
daemon

III. BACKGROUND

The first Brahma prototype is designed to support Android-
based virtual smartphones running on X86-based smartphones,
which themselves run Android, and X86-based servers, which
runs standard Linux. In addition, we started with the Secure
Virtual Mobile Platform (SVMP) [13]] and used it as the unified
base for Brahma’s virtualized smartphone implementation and
VMI implementation.

A. Android for X86

Android provides an application development framework [5]]
to simplify the development of Android applications. Develop-
ers write Android applications using the Java language so that
the resulting applications can run on Android devices with
different hardware configurations. An Android application
typically calls framework APIs to access services provided by
an Android system, for example, camera, media, and network.
Each of these services is implemented as a standalone server
process that is written in C so as to efficiently access the
relevant aspect of the hardware abstraction layer (HAL). A
framework API call made by an Android application invokes
the target service’s client-side JNI library, which in turn com-
municates with the corresponding server process via Android’s
binder IPC mechanism.

Instead of ARM-based smartphone hardware, Brahma is
built on X86-based smartphone hardware. There are currently
two versions of Android that run on X86 CPU, Android-
x86 [2[], which is supported by Asus, and Android-TA []1],
which is supported by Intel. Both of them were derived from
Android Open Source Project (AOSP), and include a series of
patches and new low-level components to enable Android to
better run on the X86-based architecture. The current Brahma
prototype is based on Android-x86.

B. Secure Virtual Mobile Platform (SVMP)

SVMP [13] is designed to allow a smartphone user to access
remote Android-based VMSs running on virtualized servers.
As shown in Figure [I] it consists of the following system
components:

o The front-end SVMP client is an application running on

a user’s Android or iOS phone or tablet, and works

similarly to conventional remote desktop clients such as
those for VNC or RDP. The SVMP client application
forwards to a remote VM a user smartphone’s touch
screen events, sensor inputs from compass, accelerometer,
gyroscope, etc., GPS-based location information, and
two-way inter-application messaging for notifications and
Intents, through protocol buffers messages. The relay
of all these inputs enables a remote VM to feel like
running on a physical smartphone. In addition, the client
also creates a WebRTC [14] connection with a remote
VM, and this enables the audio and video outputs from
the VM to flow back to the user via this connection.
WebRTC is chosen because it is capable of traversing
NAT and firewalls by supporting STUN, TURN and ICE
protocols, and because it provides support for several
resilient video codecs, such as VP8, that can effectively
handle fluctuating wireless network conditions.

o The SVMP Overseer is internet-facing, and is responsible
for receiving login requests from users, performing au-
thentication, and creating and managing virtual machines
on demand. It supports a RESTful API that SVMP clients
and SVMP Servers can request for service.

o The SVMP Server is also internet-facing, and takes care of
receiving connection requests from users that the SVMP
Overseer already authenticated, and routing various types
of sensor input messages from SVMP clients to SVMP
daemons running inside VMs. The SVMP server is de-
signed to run behind a load balancer to scale up with the
input loads.

e The SVMP daemon runs inside a VM to replay inputs
from the client application to the corresponding virtual
devices in the VM, and subscriptions or Action_DIAL
intents from the VM to the client application.

SVMP sets up a set of virtual devices inside each VM that
emulates the input and output devices of a virtual smartphone.
The touch input events from the client application on a
user’s smartphone are forwarded to the SVMP server, passed
through the SVMP daemon, injected into the Touch Input
virtual device, and eventually delivered to applications. Other
sensor events generated on a user’s smartphone go through a
similar process to be delivered to a virtual smartphone. The
SVMP daemon on a VM injects these input events to a local
socket on , the /dev/svmp_sensors socket, and a SVMP
HAL module, 1ibsensors, listens on the svmp_sensors
socket and processes these input events accordingly.

SVMP also supports exchanges of intents between a SVMP
client and a smartphone VM. For example, for location in-
formation, SVMP passes any subscription intents requested
by the LocationManager on a smartphone VM back to the
client application on a user’s smartphone, which in turn passes
the location information to the smartphone VM. In addition,
the SVMP client is capable of receiving the ACTION_DIAL
intent when a phone number URI is pressed in the smartphone
VM, showing any notifications received from the smartphone
VM, and forwarding URLs with ACTION_VIEW intent to the

smartphone VM to open the URL inside the VM.

For video, a Virtual Frame Buffer (VFB) device is set up
in the kernel of each smartphone VM. When an frame is
written to the VFB, the Android Surfaceflinger module
generates a VSYNC event, which causes the contents of the
VEB to be fed into the WebRTC module, which compresses
it and streams to the SVMP client.

We used SVMP as the basis to implement Brahma’s virtual
mobility infrastructure system, in which smartphone VMs run
on X86 servers, and Brahma’s virtualized smartphone system,
in which smartphone VMs run together with the SVMP client
on the user’s physical smartphone

IV. VIRTUALIZED SMARTPHONE
A. Use Case

A virtualized smartphone enables multiple virtual machines
(VM), each of which corresponds to a virtual smartphone,
to run on top of an HAL hypervisor, which in turn runs on
the physical smartphone. A typical set-up for a virtualized
smartphone is shown in Figure 2] and consists of four types of
VMs. The Work VMs are work-related, strictly locked down,
least flexible, and allowed to connect to the corporate network
and the Internet. The Personal VMs are for day-to-day regular
use, offer more flexibility in application execution, rely on
conventional anti-virus protection, and cannot connect to the
corporate network. The Secure VMs are more secure and less
flexible than Personal VMs, cannot connect to the corporate
network either, and are designed for carrying out secure trans-
actions, such as entering credit card numbers. The Playground
VMs are the least secure, and are meant to be disposable
VMs that users can throw away after playing with unknown
applications or potential malware. After a Playground VM is
deleted, all the side effects in the VM are wiped completely
clean from the underlying physical smartphone.

In terms of security policy enforcement, Brahma applies
attestation and white-listing to completely lock down Work
VMs, applies white-listing to Secure VMs to prevent malware
such as key loggers, applies black-listing (traditional anti-virus
protection) to Personal VMs to balance between security and
convenience, and imposes no restrictions on Playground VMs,
but includes a malware detection mechanism that constantly
looks out for suspicious symptoms and alerts users when these
VMs appear to be compromised.

B. The Host

Although most Android smartphones are based on ARM
SOC, we chose to implement the first Brahma prototype on an
X86-based smartphone, specifically Asus’s Zenfone2, because
the virtualization feature on most ARM-based SOCs is turned
off by default and cannot be turned on without the approval
and support of smartphone chip vendors. More specifically,
we were able to get the open-source ARM hypervisor [6]]
to successfully run on the development board using a 64-bit
virtualizable ARM SOC such as Cortex-A53, but not on any
of the commercially available smartphone reference designs
from Qualcomm or Mediatek, because of this restriction.

&

Personal

Company
Network

Policy
Check

Potential
Malware

.
&

Playground

HTTPS

)
)

4
a

Work Secure

Hypervisor

Physical
Phane

&

Fig. 2: A typical set-up for a virtualized smartphone that offers
a smartphone user a work virtual smartphone for work use, a
personal virtual smartphone for day-to-day use, a secure virtual
smartphone for performing secure on-line transactions, and a
disposable playground VM for experimentation

In contrast, we were able to successfully implement Brahma
on a Zenfone2 purchased from the open market, which is based
on Intel’s Atom CPU, without any help from Asus or Intel. In
addition to running Android-x86 inside the VMs, the Brahma
prototype also runs Android-x86 on the physical smartphone
because this presents to the user the illusion that Android VMs
themselves are just like apps running on a standard Android
phone.

To turn Android-x86 into a kernel that supports virtual-
ization, we first applied a binary translator to convert parts
of the Android framework and Android applications that
include ARM binary instructions, e.g. JNI code, into their
corresponding X86 binary code so that they can run on X86
CPU. Then we compiled KVM into the Android-x86 kernel,
turned on QEMU, and successfully ran Android-x86 virtual
machines on a Zenfone2 that itself also ran Android-x86.
In the current Brahma prototype, each Android-x86 VM is
packaged into an app running as a separate process on top of
the host, which also runs the Android-x86 kernel, and each
such process includes a QEMU component, which runs as
multiple threads and supports I/O device emulation among
other things.

C. Direct Frame Buffer Access

Because user interaction fluency is crucial to a smartphone’s
usability, the first design challenge of Brahma is how to pro-
vide the same level of Ul fluency inside a virtual smartphone
as on a physical smartphone. The key to achieving UI fluency
is to eliminate unnecessary data movement when a virtual
smartphone’s frame buffer is copied to the underlying physical
smartphone’s frame buffer. Accordingly, we replaced SVMP’s
WebRTC-based mechanism for VM frame buffer delivery with
a zero-copy frame buffer write mechanism.

QEMU presents to each VM a virtual VGA card, which
a VM’s guest OS could configure with respect to its display
mode, resolution and color depth during initialization. At run
time, the guest OS writes its display content into a video
memory area corresponding to its virtual VGA card and

notifies QEMU accordingly. A VM’s video memory area is
accessible to both the VM’s guest kernel and QEMU threads,
because they both run in the same address space. In SVMP,
QEMU sends the contents of this video memory to a process
running on the host over a network connection, and incurs
at least one data copying operation. To eliminate this data
copying overhead, QEMU could write the video memory area
directly to the host’s frame buffer using a Linux system call,
or a Java thread could be created to write this video memory
area to the host’s frame buffer using an Android graphics
API call. In the current Brahma prototype, we chose the
latter approach because it is considered more future-proof with
respect to newer Android versions. Specifically, we wrote a
JNI function to retrieve the address of this video memory area,
and exposed it to a Java-based frame buffer write app, which
is responsible for writing the VM’s display contents to the
host’s frame buffer using an OpenGL library function called
the texture loading function. Android’s graphics stack
enables applications to render into buffers called surfaces,
which are composited by SurfaceFlinger, and rendered through
the OpenGL pipeline, which could be implemented by a
software rendered or accelerated by a GPU. The current
Brahma prototype treats a VM’s frame buffer as a texture,
and copies it into the host’s frame buffer directly without going
through the WebRTC protocol as supported by SVMP.

In summary, the process hosting each VM in Brahma is
comprised of three components: a set of vCPU threads for the
VM, the QEMU threads, and another Java thread for writing
the VM’s virtual frame buffer to the physical smartphone’s
frame buffer.

If a guest VM’s frame buffer is not modified, its QEMU
does not need to copy its corresponding video memory area
to the host’s frame buffer. To cut down unnecessary video
memory copying, the virtualization app of the current Brahma
prototype applies QEMU’s dirty page tracking mechanism to
the guest VM’s video memory area, detects modifications to
this memory area when they are written, and propagates these
and only these dirty pages to the host’s frame buffer at a
frequency consistent with the guest VM’s video frame rate.

D. Fast VM Cloning

A virtualized smartphone enables its user to create a copy
of a current VM to just run some unknown app, and cleanly
remove any side effects of that app later on by deleting the new
VM if the user does not like the app in any way. To support
this use case, Brahma incorporates a VM cloning mechanism
that can quickly create a new VM from a running VM. The
goal of fast VM cloning is to reduce the cloning time to that
of cloning a process. We have gone through the following four
designs of VM cloning before settling down to the last design
as the choice for the current Brahma prototype.

e All-in-one Image: A VM image is represented as a
single file, which contains the VM’s OS and data storage.
Cloning a VM means stopping the VM, copying the VM’s
image file to a new file, and booting a new VM from the
copied file.

« Image and Overlay: Leveraging the file overlay capabil-
ity of QCOW?2 [19], Brahma places a VM’s base image in
a backing file and then creates an overlay file on top of it.
After a VM is booted from its base image, all the changes
it makes during runtime are directed to its overlay file.
With this set-up, cloning a running VM becomes stopping
the VM, making a copy of the VM’s overlay file and
booting a new VM from the copied overlay file. Because
a VM’s overlay file is much smaller than its base image
file, this VM cloning mechanism is more efficient than
the previous one as a result of reduced data copying.

o Image and Overlay with Warm Boot: When cloning a
running VM, this design stops the VM, saves the VM’s
memory and other states to the overlay file, makes a copy
of the resulting overlay file, and boots a new VM from the
copied file. Because the file used in booting contains the
run-time memory state of the VM being cloned, this VM
cloning mechanism substantially reduces the new VM’s
boot-up time by eliminating the system initialization and
checking overhead associated with a cold boot.

« Image and Overlay and State with Warm Boot: This
design saves the memory state of a VM being cloned to a
separate state file rather than the VM’s overlay file, makes
a copy of the overlay file, and boots a new VM from the
state file and the copied overlay file. Because a VM’s
memory state is typically much bigger than its overlay
file, this design improves over the previous design by
reducing the amount of data involved in the file copying
operation. It is not necessary to make a copy of the state
file, because the source VM has no use for the saved
memory state file. In contrast, the third design must make
a copy of the combined overlay and memory state file
before booting the new VM, because the source VM still
needs the overlay part of the combined file.

In all of the above implementations, when a new VM is
created, some of its system configuration parameters, such as
IP address or IMEI code, are modified properly to distinguish
the newly spawned VM from the VM being cloned. The
current Brahma prototype’s VM cloning mechanism is based
on Image and Overlay and State with Warm Boot, because
it is more efficient than the other three by minimizing both the
memory state saving overhead and the boot-up time.

E. VM Memory Deduplication

Because the resources on a smartphone are much more
limited than on a server, Brahma makes every attempt to
minimize the resource consumption of every new VM. VM
cloning reduces the net disk space consumption of every new
VM. VM memory deduplication further cuts down the net
memory space consumption of every new VM.

Because the VMs running on a smartphone are likely
to be based on the same OS image, there is a significant
amount of redundancy among the memory states of the
VMs co-residing on the same physical smartphone. Brahma
uses Kernel Shared Memory (KSM) [4] to eliminate these
redundancies. Being a kernel service, KSM incurs non-trivial

performance overhead and is controlled through the sysfs
at /sys/kernel/mm/ksm. The run flag (0 or 1) starts
or stops the KSM thread, the pages_to_scan parameter
controls the number of pages scanned in one pass, and the
sleep_millisecs parameter represents the time period
between passes. In addition, KSM only merges anonymous
pages that applications designate as likely candidates for merg-
ing using the madvise system call: int madvise (addr,
length, MADV_MERGEABLE).

When applying KSM, Brahma specifically aims to eliminate
the redundancy among VMs that results from read-only pages
holding kernel code, user-level application code, and shared
libraries. Therefore, Brahma only scans each new VM’s pages
once to minimize the performance overhead introduced by
KSM. Specifically, after a VM is created, Brahma turns on
the KSM thread, instructs KSM which areas in the new VM’s
guest physical memory space to work on, and then turns off
the KSM thread after the new VM’s memory pages have been
traversed and checked.

V. VIRTUAL MOBILITY INFRASTRUCTURE
A. Use Case

Instead of running on a physical smartphone, a virtual smart-
phone could be supported by a VM running in an X86-based
enterprise cloud data center, and a smartphone user interacts
with such a virtual smartphone through proper input/output
redirection to his/her smartphone, as shown in the remote VM
case of Figure[3] With a virtual mobility infrastructure (VMI),
a smartphone user’s Work virtual smartphone is instantiated
by an VM that runs in his company’s private cloud and auto-
matically follows the company’s security policy, and his User
virtual smartphone is his physical smartphone. Compared with
the virtualized smartphone approach, VMI depends critically
on the availability of network connectivity and entails larger
application response time. In-cloud virtual smartphones are
generally preferable when applications running on them have
the following properties:

e When applications require a great deal of network or
computational resource, e.g. browsing large CAD draw-
ings, and machine learning training using GPUs,

o When applications require superuser privilege and thus
cannot run on non-rooted smartphones, and

o When data accessed by applications are not allowed to
leave a company.

Brahma’s VMI also supports single-app mode, which starts
up a new VM to run a given application and displays only
the application’s results on the user’s smartphone, as shown
in the app on remote VM case of Figure [3] This application
streaming capability makes possible display-only files, i.e.,
files that can only be displayed on but never physically come to
a user’s smartphone. In addition, this capability eliminates the
need for installation of rarely used applications. For example,
modern search engines return both web pages and applications
that are relevant to a user query, and use application streaming
(e.g. Google’s Agawi) to enable the user to view the

Sensor/user
Inputs

Remote VM

Audio/Video
Qutput

Sensor/user
Inputs

" iy
LY Avdionvideo

Qutput

i

Fig. 3: A generalized Virtual Mobility Infrastructure supports
running an entire VM or a specific app in a VM in a remote
cloud data center or on a local physical smartphone and enables
users to interact with these VMs through input/output redirec-
tion to their physical smartphones as if they are normal apps. In
the local VM case, a VM’s frame buffer is directly written into
the physical smartphone’s frame buffer without going through
the SVMP protocol.

applications’ results without installing them. As shown in
Figure 3] Brahma packages a remote VM, an app on a remote
VM, or a local VM into an app on the user’s smartphone.

B. SVMP Adaptation to Android-x86

We use SVMP as the basis to develop Brahma’s VMI proto-
type. SVMP was built on top of Android 4.4, which lacks GPU
support and limits SVMP’s usability because the applications
and UI on modern smartphones heavily rely on GPU support.
To overcome the issue, we ported SVMP to Android-x86 4.4,
which uses the drm_gralloc HAL implementation rather
than the gralloc HAL implementation in Android 4.4, and
provides full support for a wide range of GPUs used in X86
servers.

Porting SVMP to Android-x86 involves four major tasks.
The first task is recompiling the user-mode SVMP daemon
for Android-x86. The recompilation is straightforward except
for some minor changes to the launcher setting. Specifically,
the SVMP daemon implements its own launcher for the single
app mode, but the default launcher used by Android-x86 is
Trebuchet [11]]. We modified the SVMP daemon a little bit
to make it compatible with Trebuchet. The second task is
migrating the modifications in the Android framework code
made by SVMP. The framework codes of Android 4.4.4_12
and Android-x86 4.4.4_r2.0.1 are mostly the same. We man-
ually went through each of these changes to account for the
minor differences in their code structures.

The third task is porting SVMP’s HAL libraries. The SVMP
project provides its own HAL libraries to implement audio
pass-through and sensor input data injection. We replaced
Android-x86’s original HAL with SVMP’s HAL libraries by

properly modifying the build parameters of Android x86 .
Finally, to provide OpenGL support, we turned on the GPU
pass-through mechanism to expose the GPU hardware to
Andorid-x86 VMs running on our VMI infrastructure. Given
a GPU, the current Brahma prototype allows only one VM
to use it at a time. To support more fine-grained sharing and
multiplexing of the GPU resource, one may need to leverage
the new Virgl (virtual GPU) mechanism in Linux kernel 4.4
for OpenGL support.

C. Choices of Virtualization Infrastructure

Because the VMs in a VMI system typically run Android-
x86, there are multiple possibilities for back-end the virtual-
ization infrastructure of a VMI system, which are listed below:

1) A virtual smartphone runs inside an Android-x86 virtual

machine over KVM/Linux on an X86 server,

2) A virtual smartphone runs inside a Linux container on

an Android-x86-based X86 server,

3) A virtual smartphone runs inside a Linux container on

an Android-based ARM SOC-based server, and

4) A virtual smartphone runs on an Android-based ARM

SOC-based server.
The first configuration serves as the baseline. The second
configuration removes the performance and resource overhead
of HAL-based virtualization associated with the first configu-
ration. The third configuration removes the need for Android-
x86 by using a server that is based on the same hardware
as a modern smartphone. The fourth configuration dedicates
an entire ARM SOC-based server to a smartphone VM and
thus incurs no virtualization overhead. The ARM SOC-based
server in the third and fourth configuration is based on a single-
board computer Odroid-XU4 [8]], which is equipped with a
Samsung Exynos5422 CPU, containing four 2.0GHz Cortex?-
A15 cores and four 1.4GHz Cortex?-A7 cores, a Mali-T628
MP6 GPU that is compliant with OpenGL ES 3.0 and OpenCL
1.1, 2Gbyte LPDDR3 RAM, and a Gigabit Ethernet interface.
At the retail price of $40-$74 USD per node, an Odroid cluster
makes a cost-effective execution platform for the smartphone
VMs of a VMI system.

VI. PERFORMANCE EVALUATION
A. Methodology

The first Brahma prototype is built from SVMP 2.0.0
and Android-x86 4.4.4_r2.0.1, and runs on Zenfone2, which
contains an 2.3GHz 4-core Intel Atom Z3580 CPU, a 533MHz
PowerVR G6430 GPU, and 4GB of LPDDR3 RAM and runs
on Android 5.0 and QEMU 2.4.50, on an X86 machine,
which contains an 3.1GHz i5-2400 CPU and 16GB of DDR4
RAM and runs Ubuntu 14.04.3 LTS with Linux 3.19.0-42-
generic x86_64 and QEMU 2.3.0, and on a cluster of 8
Odroid single-board computers that run Android 4.4.2 on
Linux Kernel LTS 3.10 and are connected by a Gigabit Ether-
net switch. To measure the memory and power consumption
overhead of a virtualized smartphone, we use the Android
Debug Bridge (adb) shell command dumpsys meminfo
and dumpsys batterystats, respectively. Each energy

Configuration Memory Power
(MB) (mW)
Android without KVM 854.81 88.30
Android with KVM 858.37 92.98
A native browser app 858.37 + 270 1697.28
An idle 512MB VM 858.37 + 402 975
A browser app running
inside a 512MB VM | 858.37 + 553.3 | 2263.56

TABLE I: The average run-time memory usage and power
consumption of a Zenfone2 over a 10-minute interval when
it runs vanilla Android, Android with KVM when no VM is
active, a browser application on vanilla Android-x86+KVM, an
idle 512MB VM on Android-x86+KVM, and an active VM on
Android-x86+KVM that in turn runs a browser application

consumption measurement is taken over a 10-minute interval,
and every reported number is an average of 3 measurements.

B. Virtualized Smartphone Results

1) Virtualization Overhead: Brahma’s virtualized smart-
phone is modified from Zenfone2 by adding the KVM module
into the baseline Android-x86 kernel and the QEMU module
into every process that hosts a virtual machine. To measure the
additional run-time resource usage associated with virtualiza-
tion, we measured five different scenarios, which correspond
to the last five rows of Table [l a Zenfone2 running the vanilla
Android kernel, a Zenfone?2 running a modified Andorid-x86
kernel that includes the KVM module, a Zenfone2 running
the KVM-included Android-x86 kernel and a native browser
application on top of it, a Zenfone2 running the KVM-included
Android-x86 kernel and an idle 512MB VM on top of it, and
a Zenfone?2 running the KVM-included Android-x86 kernel,
and a 512MB VM on top of it, where a browser application
runs inside the VM.

Even though the size of the KVM module is 896KB,
inclusion of KVM only increases the Android-x86 kernel’s
image size from 12.8 MB to 13.0MB. The second and third
rows of Table[l|show that when no virtual machine is running,
the virtualized version of Zenfone2 incurs 3.5MB or 0.4%
more memory and 5.3% more power consumption than the
unmodified Zenfone2. Running an idle VM on the modified
Android-x86 kernel incurs lower power consumption than
running a browser application (975 mW vs. 1697.28 mW),
and the power consumption of running a browser application
inside a VM (2263.56 mW) inside a VM is substantially lower
than the sum of the energy consumptions of running the same
browser application and the VM separately (1697.28+975
mW). Because of thin provisioning, the memory consumption
of an idle 512MB Android-86 VM costs only 402MB, which
is less than 512MB. However, because of the addition of the
QEMU module to each VM process, the memory consumption
of a 512MB VM running an active browser application is
553.3MB, which is more than 512MB. The memory consump-
tion of the QEMU module is approximately 32 MB.

No. of VMs 512MB 768MB 1024MB
1 1029.1+11.01 | 1029.1+10.69 | 1029.1+10.50
2 +11.01 +10.69 +11.07
3 +11.39 +10.87 +11.14
4 +11.39 +11.07 +11.07
5 +10.50 +10.75 +10.82

TABLE II: The disk space consumption in MB as an increasing
number of VMs that are booted from the same kernel image and
configured with 512MB, 768MB and 1024MB are created on a
virtualized Zenfone2. The last four rows shows the additional
disk space requirement as the N-th VM (N = 2, 3, 4 and 5) is
created.

Because Brahma uses VM cloning to create new VMs that
are based on the same kernel image, the total disk space
requirement for the images of newly created VMs grows very
slowly when these VMs are derived from the same kernel
image. Table[lI|shows that when new VMs are booted from the
same kernel image, each newly created VM roughly imposes
an additional 11MB disk space requirement, and moreover
this additional disk space requirement is independent of the
amount of physical memory configured with the new VM.
The second row of Table |lI| shows the base kernel image size
and the additional disk space required when the first VM is
created.

2) Virtual Machine Cloning: Section describes four
different VM cloning designs. Table |[II] shows the time taken
to clone a live VM configured with 512MB, 768MB and
1024MB, when each of these four mechanisms is applied.
In this study, the VM being cloned stays idle after its boot-
up. The end-to-end VM cloning time is the sum of the times
required for the three steps of cloning a VM: (I) stop the VM
to be cloned, (II) prepare the image for the new VM via file
copying, and (IIT) boot up the new VM.

In the first design, All-in-one Image, the bulk of the VM
cloning time is spent on Step (II). Because the times for the
three VM cloning steps do not vary much with the amount
of configured physical memory of the VM being cloned, the
VM cloning times for VMs of different physical memory
configurations are largely the same.

In the second design, Image and Overlay, the time required
for Step II is significantly reduced because the overlay file
(11MB) is much smaller than the base image file (about 1GB).
As a result, the end-to-end VM cloning time of the second
design is lower than the first design by 15 seconds, which
results mainly from the reduction in the image file copying
time. For the same reason as the first design, the VM cloning
times for VMs of different physical memory configurations
under the second design also do not differ much from one
another.

The third design, Image and Overlay with Warm Boot,
replaces cold boot used in the first and second design with
warm boot, which requires saving the source VM’s memory
state to the overlay file, makes a copy of the overlay file,

and boots up the new VM from the new copy of the overlay
file rather than from the base kernel image. Moreover, this
design uses savevm rather than shutdowm to stop the VM
being cloned. Compared with the second design, savevm plus
warm boot together results in a factor of three reduction in the
VM cloning time even though it involves an additional VM
memory state saving step, which takes less than 3 seconds.
The memory state copy times for different VMs with different
amounts of configured memory are largely the same, because
this copy time depends on the amount of memory actually
provisioned for the VM being cloned rather than its originally
configured amount. For example, because of thin provisioning,
VMs that are originally configured with 512MB, 768MB and
1024MB are all provisioned with the same amount of physical
memory, roughly 360MB. As a result, the memory state saving
copy times for these VMs are largely the same.

The fourth design, Image and Overlay and State with Warm
Boot, improves upon the third design by using migrate
rather than savevm to save the source VM’s state to a separate
file, and eliminating the need to copy the saved memory
state file of the source VM. Compared with the third design,
the fourth design produces a 35% reduction in VM cloning
time regardless of the physical memory configuration of the
source VM. This cloning time reduction depends on the actual
amount of memory provisioned for the source VM and is
thus largely independent of its physical memory configuration.
Note that the saved memory state file in the fourth design can
be safely discarded after the new VM successfully boots up,
and therefore does not constitute a long-term liability.

3) Memory Deduplication: To minimize the total physical
memory usage of running multiple VMs that are booted up
from the same kernel image on a smartphone, Brahma applies
KSM to eliminate the redundancies among these VMs. Ta-
ble [[V]shows the total physical memory usage of an increasing
number of VMs running on a virtualized Zenfone2 that are
booted up from the same kernel image but configured different
amounts of physical memory, when KSM is turned off and
on. These VMs stay idle after they are booted up. Without
KSM, the total memory space requirement is roughly equal to
the number of VMs multiplied by the amount of provisioned
physical memory for a single VM.

When KSM is turned on, it could identify and remove intra-
VM and inter-VM redundancies. The second row of Table [V]
(No. of VMs = 1) shows that the amount of physical memory
provisioned for a VM is smaller than and independent of its
physical memory configuration, because QEMU supports thin
memory provisioning; moreover, the redundancy within the
same VM is very small because the memory space requirement
when KSM is turned on is very close to that when KSM is
turned off.

Every new VM incurs between 60 to 70 MB of addi-
tional memory usage regardless of the VM’s physical memory
configuration. This result suggests that the memory state
differences among these concurrently running VMs mainly
result from some VM-specific state that has nothing to do
with the VM’s physical memory configuration. To determine in

Design 512MB VM 768MB VM 1024MB VM
Stop | Copy | Bootup | Total | Stop | Copy | Bootup | Total | Stop | Copy | Bootup | Total
1 142 | 16.7 24.5 554 | 141 | 169 242 552 | 140 | 169 243 552
2 14.0 | 0.08 26.8 409 | 13.9 | 0.08 26.5 40.5 | 14.0 | 0.08 26.7 40.8
3 5.4 2.8 4.7 129 | 5.6 29 5.0 13.5 6.0 2.8 4.5 133
4 2.8 0.08 54 8.3 3.0 0.07 5.6 8.7 3.1 0.8 54 8.6

TABLE III: The end-to-end VM cloning times in second of four different VM cloning designs for VMs that are configured with
512MB, 768MB and 1024MB. Design 1 is All-in-one Image, Design 2 is Image and Overlay, Design 3 is Image and Overlay with
Warm Boot, and Design 4 is Image and Overlay and State with Warm Boot.

No. of VMs | 512MB 768MB | 1024MB
1 214/202 222/207 224/210
2 430/263 438/269 452/284
3 645/334 652/336 680/361
4 856/400 884/420 902/431
5 1070/469 | 1104/488 | 1116/493

TABLE IV: The total memory usage in MB as an increasing
number of VMs that are booted from the same kernel image and
configured with 512MB, 768MB and 1024MB are created and
run on a virtualized Zenfone2, when KSM is turned off (left)
and on (right)

14000

12000

10000

8000

6000

number of duplicate pages

4000

2000

0

0 64 128192 256 320 384 448 512 576 640 704 768 832 896 9601024
physical memary address (mb)

Fig. 4: The histogram of the number of duplicate pages over
the physical address space of a VM with a physical memory
configuration of 1024MB. Each bar represents the number of
duplicate pages within a 64MB address space range.

which parts of a VM’s physical address space its VM-specific
state lie, we count the number of pages in each 64MB region of
a VM'’s physical address space that are duplicates with respect
to other concurrently running VMs, and the results are shown
in Figure @] which suggests that a VM’s VM-specific state
mainly lies in the middle of the VM’s physical address space.

Table shows the time required to deduplicate a new
VM with a different physical memory configuration when the
number of pre-existing VMs varies from 0 to 4. KSM uses
two trees. The stable tree holds duplicate pages and is long-
lived, whereas the unstable tree holds non-duplicate pages and
is recreated repeatedly at run time. To deduplicate the memory

VM deduplicated | 512MB | 768MB | 1024MB
Ist 317 326 327
2nd 993 996 1015
3rd 755 766 778
4th 911 921 947
Sth 1076 1089 1123

TABLE V: The amount of time in msec required to deduplicate
a new VM with a physical memory configuration of 512MB,
768MB and 1024MB, when there are a varying number of pre-
existing VMs

pages of a new VM, KSM (I) scans the non-duplicate memory
pages of existing VMs to build up the unstable tree, and (II)
checks the new VM’s pages against the stable and unstable
trees to add each page to one of these two trees. To add a
page to the stable tree, KSM needs special set-up such as copy-
on-write for the page and thus incurs additional performance
overhead. The time required for Step I is linearly proportional
to the number of pre-existing VMs, and the time required for
Step II is largely fixed and depends only on the amount of
memory provisioned to the new VM. This is why the total
memory deduplication time in Table [V] grows linearly with
the total number of existing VMs, except when the second
VM is added. When KSM deduplicates the first VM, initially
there is no stable tree, and KVM builds up the stable tree
from the duplicated pages within the first VM. This stable
tree is small because the intra-VM redundancy is relatively
rare. When KSM deduplicates the second VM, it first creates
an unstable tree from the first VM’s non-duplicate pages, and
checks the second VM’s pages against this unstable tree and
the stable tree to grow the stable tree. After the second VM
is deduplicated, the stable tree remains largely unchanged,
because it already captures most of the duplicate pages among
these VMs. That is, the bulk of the stable tree is formed
when KSM deduplicates the second VM. That’s why the total
deduplication time for the second VM is anomalously larger
than the total deduplication times for other VMs.

C. Virtual Mobility Infrastructure Results

We set up a test-bed to compare three Android-x86 VMI
execution platforms in terms of the touch input update rate, the
video output frame rate, and the round-trip ping latency. The

Configuration Frames | Touch Updates | Ping

per sec per sec (msec)

Remote PM on Odroid 32 45 13.01
Remote VM on X86 PC 39 57 5.8
Local VM on Zenphone2 33 30 NA

TABLE VI: Comparison of the touch input rate, video output
frame rate, and round-trip ping latency among three config-
urations: a remote Android-x86 physical machine based on
Odroid-XU4, an Android-x86 virtual machine running on a
X86 PC and a local Android-x86 virtual machine running on
the user’s Zenfone2

test-bed consists of a virtualized Zenfone2 that is connected
to a SGHz 234Mbps 802.11AC Wifi router, which in turn is
connected via a Gigabit Ethernet switch to an Odroid SBC
and an X86 PC. The spatial resolution of the display used in
this study is 800 x 600 at 130 dpi and the temporal resolution
is 91 fps.

Table shows the performance measurements of (I) an
Android-x86 physical machine running on Odroid-XU, (II)
an Android-x86 virtual machine running on a X86 PC and
(IIT) a local Android-x86 virtual machine running on the
user’s Zenfone2. In general, Configuration (II) is the most
performant, but Configuration (I) is pretty comparable to
Configuration (II). Surprisingly, Configuration (III) performs
worse than Configuration (I) even though the former does not
involve networking. This may be because the hardware behind
Zenphone?2 is slightly less powerful than Odroid-XU. These
results demonstrates that an Odroid cluster is a promising
backend VMI execution platform.

To evaluate the effectiveness of the direct frame buffer write
optimization, we measured the video output frame rate it is
turned on and off. When it is off, the measured video frame
rate is 17.5, and when it is turned on the measured video frame
rate is 33, almost a factor of two improvement.

VII. CONCLUSION

In the era of consumerization of enterprise IT, the BYOD
trend is inevitable, and the associated security problem poses
a serious challenge to corporate IT departments. The thesis
of this research is that smartphone virtualization could make
an effective solution to the BYOD problem as long as it
is proved to be practical and usable on commercial smart-
phones. This paper describes the design and implementation
of a comprehensive smartphone virtualization solution called
Brahma, which consists of a virtualized smartphone system
and a virtual mobility infrastructure system. The first Brahma
prototype is fully operational on Asus Zenfone2, and the initial
performance results taken from this prototype look promising
in terms of user interface fluency and additional memory
resource usage and power consumption due to virtualization.
Specifically, this work makes the following research contribu-
tions:

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
(11]
[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

A unified smartphone virtualization architecture that en-
compasses both virtualized smartphone and virtual mo-
bility infrastructure by allowing virtual machines to run
on a cloud backend or on a smartphone,

A set of optimization mechanisms such as direct frame
buffer access, VM cloning, memory de-duplication, etc.
that collectively improve the user interface fluency and
minimize the resource/performance overhead associated
with virtualized smartphone, and

A complete prototype implementation of the Brahma
architecture on a commercial smartphone without any
hardware changes and its detailed performance evaluation
and analysis.

REFERENCES

Android on Intel Platforms. https://01.org/android-ia/. accessed Mar 11,
2016.

Android-x86 - Porting Android to x86. http://www.android-x86.org/.
accessed Mar 11, 2016.

DevicePolicyManager APIs. |https://source.android.com/devices/tech/
admin/managed- profiles.html#purpose. accessed Mar 11, 2016.

How to use the Kernel Samepage Merging feature. https://www.kernel.
org/doc/Documentation/vm/ksm.txt. accessed Mar 11, 2016.
Introduction to Android. http://developer.android.com/guide/index.html.
accessed Mar 11, 2016.

Linaro ARM Hypervisor. https://wiki.linaro.org/Core/Virtualization?
action=show&redirect=Virtualization. accessed Mar 11, 2016.
Multimedia Redirection. |https://github.com/FreeRDP/FreeRDP/wiki/
Multimedia-Redirection, accessed Mar 11, 2016.

ODROID-XU4. http://www.hardkernel.com/main/products/prdt_info.
php?g_code=G143452239825| accessed Mar 11, 2016.

RED HAT ENTERPRISE VIRTUALIZATION: HYPERVISOR. https:
/Iwww.redhat.com/t/pdt/rhev/DOC0O76-RHEV-Hypervisor.pdf. accessed
Mar 11, 2016.

Supporting Multiple Users. |https://source.android.com/devices/tech/
admin/multi-user.html, accessed Mar 11, 2016.

Trebuchet Launcher - GitHub. https://github.com/CyanogenMod/
android_packages_apps_Trebuchet. accessed Mar 11, 2016.

Virtual desktop infrastructure (VDI). http://searchservervirtualization.
techtarget.com/definition/virtual-desktop-infrastructure- VDI. accessed
Mar 11, 2016.

Virtual Smart Phones in the Cloud. https://svmp.github.io/index.html.
accessed Mar 11, 2016.

WebRTC. https://webrtc.org/, accessed Mar 11, 2016.

J. Andrus, C. Dall, A.V. Hof, O. Laadan, and J. Nieh. Cells: A virtual
mobile smartphone architecture. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, pages 173-187.
ACM, 2011.

K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell, H. Tuch,
and B. Zoppis. The vmware mobile virtualization platform: is that a
hypervisor in your pocket? ACM SIGOPS Operating Systems Review,
44:124-135, 2010.

J.Y. Hwang, S.b. Suh, S.K. Heo, C.J. Park, J.M. Ryu, S.Y. Park, and
C.R. Kim. Xen on arm: System virtualization using xen hypervisor for
arm-based secure mobile phones. In Consumer Communications and
Networking Conference, 2008. CCNC 2008. 5th IEEE, pages 257-261.
IEEE, 2008.

D. Jaramillo, N. Katz, B. Bodin, W. Tworek, R. Smart, and T. Cook.
Cooperative solutions for bring your own device (byod). IBM Journal
of Research and Development, 57:5:1-5:11, 2013.

Mark McLoughlin. The qcow?2 image format. https://people.gnome.org/
~markmc/qcow-image-format.html. September, 2008.

Dan Meyer. Agawi puts touch-screens to the test. http://www.rcrwireless.
com/20140115/devices/agawi-puts-touch-screens-to-the-test. January,
2014.

T. Zefferer and P. Teufl. Policy-based security assessment of mobile
end-user devices an alternative to mobile device management solutions
for android smartphones. In Security and Cryptography (SECRYPT),
2013 International Conference on. IEEE, 2013.

https://01.org/android-ia/
http://www.android-x86.org/
https://source.android.com/devices/tech/admin/managed-profiles.html#purpose
https://source.android.com/devices/tech/admin/managed-profiles.html#purpose
https://www.kernel.org/doc/Documentation/vm/ksm.txt
https://www.kernel.org/doc/Documentation/vm/ksm.txt
http://developer.android.com/guide/index.html
https://wiki.linaro.org/Core/Virtualization?action=show&redirect=Virtualization
https://wiki.linaro.org/Core/Virtualization?action=show&redirect=Virtualization
https://github.com/FreeRDP/FreeRDP/wiki/Multimedia-Redirection
https://github.com/FreeRDP/FreeRDP/wiki/Multimedia-Redirection
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
https://www.redhat.com/f/pdf/rhev/DOC076-RHEV-Hypervisor.pdf
https://www.redhat.com/f/pdf/rhev/DOC076-RHEV-Hypervisor.pdf
https://source.android.com/devices/tech/admin/multi-user.html
https://source.android.com/devices/tech/admin/multi-user.html
https://github.com/CyanogenMod/android_packages_apps_Trebuchet
https://github.com/CyanogenMod/android_packages_apps_Trebuchet
http://searchservervirtualization.techtarget.com/definition/virtual-desktop-infrastructure-VDI
http://searchservervirtualization.techtarget.com/definition/virtual-desktop-infrastructure-VDI
https://svmp.github.io/index.html
https://webrtc.org/
https://people.gnome.org/~markmc/qcow-image-format.html
https://people.gnome.org/~markmc/qcow-image-format.html
http://www.rcrwireless.com/20140115/devices/agawi-puts-touch-screens-to-the-test
http://www.rcrwireless.com/20140115/devices/agawi-puts-touch-screens-to-the-test

	Introduction
	Related Work
	Background
	Android for X86
	Secure Virtual Mobile Platform (SVMP)

	Virtualized Smartphone
	Use Case
	The Host
	Direct Frame Buffer Access
	Fast VM Cloning
	VM Memory Deduplication

	Virtual Mobility Infrastructure
	Use Case
	SVMP Adaptation to Android-x86
	Choices of Virtualization Infrastructure

	Performance Evaluation
	Methodology
	Virtualized Smartphone Results
	Virtualization Overhead
	Virtual Machine Cloning
	Memory Deduplication

	Virtual Mobility Infrastructure Results

	Conclusion
	References

