
Memcached, Redis, and Aerospike Key-Value Stores
Empirical Comparison

Anthony Anthony
University of Waterloo
200 University Ave W
Waterloo, ON, Canada

+1 (226) 808-9489
a3anthon@uwaterloo.ca

Yaganti Naga Malleswara Rao
University of Waterloo
200 University Ave W
Waterloo, ON, Canada

+1 (226) 505-5900
nmyagant@uwterloo.ca

ABSTRACT
The popularity of NoSQL database and the availability of larger
DRAM have generated a great interest in in-memory key-value
stores (kv-store) in the recent years. As a consequence, many
similar kv-store store projects/products has emerged. Besides the
benchmarking results provided by the KV-store developers which
are usually tested under their favorable setups and scenario, there
are very limited comprehensive resources for users to decide
which kv-store to choose given a specific workload/use-case. To
provide users with an unbiased and up-to-date insight in selecting
in-memory kv-stores, we conduct a study to empirically compare
Redis, Memcached and Aerospike on equal ground by trying to
keep the default configuration for each database and fair setups
(single and cluster mode) and well-rounded workloads
(read-heavy, balanced, and write-heavy). We also present our
insights not only as performance results and analyses but also as
lessons learned and our experience relating to the setup,
configuration, and compatibility of some kv-store we have
considered.

1. INTRODUCTION
The development of DRAM technology has allowed us to have a
memory with a large capacity and relatively cheap price, i.e., The
cost for 2x 8GB DIMM DDR3-1600 is 0.0031 USD/Mbyte in
2016 [10]. This advancement of RAM has triggered the NoSQL
databases to leverage the fast reads and writes in DRAM to speed
up the database query that increases user experience. A study [23]
shows that delay in a few hundred milliseconds could lead to
potential monetary loss due to bad user experience. Thus, NoSQL
key-value stores (A database paradigm used for storing, retrieving
and managing Associative arrays/dictionaries) have been
increasing in terms of the available choices (e.g. Redis,
Memcached, Aerospike, Hazelcast, Voldemort, RiakKV, etc) and
widely adopted by wide arrays of software companies. Facebook,
Twitter, Zynga, and other companies adopted Memcached
[18][19][20]. Github, Weibo, Snapchat, Flicker are among the
companies that used Redis [21]. Kayak, Appnexus, Adform chose
to use Aerospike [22]. Key-value stores are used for either
caching on top of persistent databases or other various other use
cases, such as storing web sessions and sharing data among
distributed systems.

The key problem is that there is very limited guides or resources
that provide the comparison among these key-value stores and
most of them are not up to date. Some of the resources are even
somewhat published by people affiliated in particular database

project. Thus, the results are somewhat biased as the tested DB
setup might be set to give more advantage of one of the systems.
We will discuss more in Section 8 (Related Work).

In this work, we conduct a thorough experimental evaluation by
comparing three major key-value stores nowadays, namely Redis,
Memcached, and Aerospike. We first elaborate the databases that
we tested in Section 3. Then, the evaluation methodology
comprises experimental setups, i.e., single and cluster mode;
benchmark setups including the description of YCSB, dataset
configurations, types workloads (i.e., read-heavy, balanced,
write-heavy), and concurrent access; and evaluation metrics will
be discussed in Section 4. The throughput, read latency, write
latency, and memory footprint are presented and analyzed in
Section 5. Our experiences in choosing the databases, setting them
up, and running benchmark are provided in Section 6. Related
work and conclusion are presented in Section 7 and 8
respectively.

2. TESTED DATABASES
In this section, we detail the three open-source databases, the
reasons for selecting them, and the configuration for each
database.

Table 1. Similarities and differences among databases

DB Name Redis Memcached Aerospike

KV-Store Rank 1 2 7

Initial Release 2009 2003 2012

Implementation
Language

C C C

Number of
Supported
Languages

33 13 11

Multi-threaded
Processing

No Yes Yes

Clustering Yes (2016) Yes Yes

Table 1 shows the similarities and differences among the
databases. Several essential common characteristics among all the

1

three databases are that they are (1) able to hold the dataset
entirely in memory (RAM); (2) configurable to form a cluster
consist of several database instances running in sharding mode;
(3) they are on the top 10 (out of 55) list of the most popular
key-value stores ranking in December 2016 provided by
DB-Engines [1]. Despite the differences in supporting certain
features, such as backend storage, supported data types,
server-side scripts, replication, consistency, and persistence, the
difference in supporting multithreaded query processing between
Redis and the other two make it more appealing to compare the
databases. In evaluating those databases, we try to disable the
configuration related to disk-persistent while keeping the other
configurations as default.

2.1 Redis
Redis, started as a one-person project by Salvatore Sanfilippo, is
an open source (BSD licensed) key-value store that can be used as
a database, cache, and message broker [2]. Compared with
Memcached and Aerospike, Redis supports more complex data
types including hashes, sets, and sorted sets. When used as a
cache, Redis supports six evictions policies. Moreover, it also
provides relatively large key and value size up to 512MB which
may involve some optimization in their hashing mechanism to
maintain good performance. Despite the fact that Redis serialize
the data access into a single thread, it is on the first list of the most
popular KV-stores [1].

A Redis system consists of Redis server and Redis client. The
Redis server can handle multiple client connections concurrently
by a wire protocol implemented in the client libraries. To date,
there are up to 33 programming languages support Redis client
libraries. Redis has supported clustering since version 3.0.
released Jan. 2016. In the sharding cluster mode, the client library
is responsible for the distributed hashing over the servers. In terms
of concurrency control, Redis operations are atomic and no
synchronization method needed as a consequence of single thread
event loop.

In configuring Redis in our experiment, both in single and cluster
mode, we turn off the snapshotting option (save <seconds>
<changes>) and we allow connections from other hosts to connect
by setting protected-mode off. The Redis version used in the
experiment is stable version 3.2.5.

2.2 Memcached
Memcached is another open source (BSD licensed) in-memory
key-value store for relatively small data and claimed to be
high-performance, distributed caching systems [3]. Being
different to Redis, Memcached processed queries / data access in
a multi-threaded manner. In more detail, there is a single thread
accepting the connections and creates worker threads that run it
own event loop and handle its own clients.

The design principle of Memcached differ from that of Redis, it
adheres to the concept of keeping the data types and commands
simple. Thus, other data types need to be pre-processed or
serialized to string or binary prior to storing. There are less
complex commands compared with those of Redis; the reason is
that all commands in Memcached are implemented to be fast and
lock-friendly to give a near-predictable query speed [4]. Some
other drawbacks with Memcached are the max size for the value
is 1MB, the max key size is 250 bytes, and it only supports LRU
eviction policy when used as a cache layer. Similar with Redis,
the client side does the distributed hashing so it knows which

server to access for an item. In terms of concurrency control,
Memcached guarantees operations are internally atomic.
In our experiment, Memcached version 1.4.13 is used and use the
default configuration since it does not have support for persistent
and our experiment's setup, will be further described in Section 5,
will not exhaust the available memory. In this default
configuration, Memcached will create 4 threads to handle clients’
requests.

2.3 Aerospike
Aerospike is a distributed flash-optimized in-memory key-value
store. It was first known as Citrusleaf 2.0 in August 2012 before
the company rebranded [5]. The Aerospike company releases the
database in two editions i.e., enterprise edition and community
edition (AGPL licensed) that differ in several ways, such as
advanced monitoring console, cross datacenter replication, and
Fast Restart, Rapid Rebalancing, security and IPV6 supports.

Srinivasan and Bulkowski (2011) states that Aerospike
architecture comprises three layers, i.e., Client Layer (library) that
tracks node and knows where the data resides in the cluster; Data
Distribution Layer that manages cluster communications and
handles failover, replication, synchronization, rebalancing, and
data migration; Data Storage Layer that stores data in memory and
flash memory for fast retrieval. Although Data Storage Layer is
optimized for flash memory (SSDs), it can also be configured to
store data in memory (RAM). Moreover, the record value size
supported is up to 1 MB. Moreover, Aerospike claims a strict
guarantee about the read/write atomicity (no stale read).

In setting up Aerospike for our experiment, we keep the default
configuration which has the ​service-threads​ , ​transaction-queues​ ,
and transaction-threads-per-queue value set to 4 and use
multicast mode in heartbeat configuration. We only modify the
replication factor to 1 so that it does not replicate the data.

3 EVALUATION METHODOLOGY
3.1 Experimental Setup
In this section, we explain the hardware and software details used
in performing our benchmarking.

3.1.1 Single Node
We use Ubuntu 12.04 (Linux 3.2.0-23-generic) machine with a
total memory of 16GB and 12 CPU cores powered by AMD
Opteron Processor. We choose this configuration because a
machine equipped with 16 GB is able to host a database to run a
decent workload. This machine is equipped with Broadcom
Corporation NetXtreme II BCM5716 Gigabit Ethernet. All the
three databases evaluated in this work are installed on this
machine in single node configuration. Lastly, there is no other
noticeable programs sharing the machine’s resources while we do
our benchmarking.

3.1.2 Cluster mode
In cluster mode, three machines with the configurations identical
to the one mentioned above were set up to work form a cluster.
Then, the three tested databases are installed on each machine
with the databases’ configurations explained Section 3. The
machines are connected with each other by network links capable
of transferring up to 1Gbits/sec. All the machines are provided
and by the University of Waterloo and located at the same data
center. Lastly, there is no other noticeable program sharing the
machine’s resources while we were performing the benchmarking.

2

3.2 Benchmark Setup
In this subsection, the detailed description of the benchmarking
tool, various workloads, and concurrent access scenarios will be
explained.

3.2.1 Yahoo! Cloud Serving Benchmark (YCSB)
“The goal of the YCSB project is to develop a framework and
common set of workloads for evaluating the performance of
different “key-value” and “cloud” serving stores [7].” With this
goal of YCSB, it is suitable for us to leverage YCSB in
benchmarking the three key-value stores. YCSB implements the
client side for a number of databases including Redis,
Memcached, and Aerospike. The YCSB program reads a set of
predefined modifiable workload files, generates the dataset
accordingly, loads the dataset to the corresponding database, runs
the operations specified in the workload file, and finally collects
the performance for the load and run phase. Figure 1 depicts the
architecture of YCSB [9]. It is mainly implemented in Java as
many of the DB have Java API. YCSB allows programmers to
extend the project to implement a new database interface or
modify the current interface if a DB update changes the API.

In our experiment, YCSB version 0.11.0 is used. The YCSB’s
default DB interfaces are used for all the three databases in both
single and cluster modes, except for Redis cluster. The provided
Redis interface in YCSB 0.11.0 has not yet supported to
communicate with Redis cluster (v3.0 or higher). Hence, the
interface is updated to use Jedis (Redis client library for Java)
version 2.8.0 instead of version 2.0.0. Minor modification is also
performed in accordance with Jedis 2.8.0 API to support
clustering. The modification is made public and available in the
Github [8].

Figure 1. YCSB Client Architecture

In running the YCSB benchmark, there are two phases: the load
phase and run phase. In the load phase, YCSB will generate data
and send it to the corresponding DB to populate the dataset in the
DB. In the run phase, YCSB will perform the operations
according to the workload file. More detail about the workload
file used during both phases will be discussed in the next
subsection.

3.2.2 Datasets
In order to provide a fair and useful insight for the benchmarking,
choosing the right combinations of workload is very critical. The
combinations might consist of the number of records to be loaded

during YCSB load phase, the number of operation to be
performed during YCSB run phase, read-write proportion, the size
of each record, as well as the distribution of the requests.

In YCSB’s configuration, the number of records and operations in
the workload file are kept at a constant value of 1,000,000 in
evaluating the performance of the three databases across three
distinct workloads. The value in each record is further divided
into fields. The field count is set to 10 and the field length is set to
800 bytes. As a result, each record has a value size of 8KB and the
total dataset is approximately 8GB. The YCSB is also tuned to
follow the Uniform distribution in accessing the records during
the run phase. In this case, each record has the same probability to
be accessed. The three different workloads used to evaluate the
databases are explained in the following subsections.

3.2.2.1 Read-heavy Workload

In this workload, the read proportion is set to 0.9 while the write
proportion is set to 0.1. Since the operations count is 1,000,000,
there are 900,000 read operations and 100,000 write operations
performed during the run phase. This workload will enable us to
identify which databases are robust with the read-heavy use case.

3.2.2.2 Balanced Workload

To simulate the use case of having the same number of reads and
writes, we set the read proportion to 0.5 and the write proportion
to 0.5 of the total operations. Hence, the read and write operations
are equally 500,000.

3.2.2.3 Write-heavy Workload

The last workload tries to stress the databases with write mostly
operation so that we will know which database is more resistant to
a high ratio of writes. Thus, the read proportion is 0.05 and the
write proportion is 0.95 of the total operations. Hence the read
operations are 50,000 and write operations are 950,000.

3.2.3 Concurrent Access
The efficiency of a database in handling concurrency is a key
factor in choosing a particular database. Nowadays, since more
and more improvements to web-servers and application servers
increase the load on the database, benchmarking the database
against a various number of concurrent clients is important to give
practical results.

We start with 1 client to understand the performance metrics in
base case for all databases and continue from 4 to 32 with an
increment of 4 at a time. Hence, the number of clients are
configured to 1, 4, 8, 12, 16, 20, 24, 28, and 32. We used the
YCSB’s inbuilt mechanism to measure the performance under
multiple concurrent clients by specifying the parameter
threadcount to tune the number of concurrent threads used to test
the database.

3.3 Evaluation Metrics
The comparison among the three databases are based on the
following metrics: throughput, read latency, write latency and
memory footprint with the variation in workloads as well as the
number of concurrent clients. The throughput and latencies are
collected in the client side while memory footprint is collected on
the database server machine(s).

4 EXPERIMENT RESULTS
4.1 Single Node

3

Figure 2 Throughput Analysis in single node mode

Figure 3 Write Latency Analysis in single node mode

As many production systems start from a single node setup to
reduce the upfront investment and complexity in configuring a
cluster, it is essential that database have a good performance
before it scales to multiple nodes. We use the same evaluation
metrics as mentioned in Section 4.3 and run the types of
workloads detailed in Section 6

4.1.1​ Throughput Analysis

The Figure 2 shows the results explained in this section. In the
read-heavy and balanced workload scenarios, Memcached is
obviously the leading in terms of throughput with Aerospike and
Redis follow behind it. The throughputs of Aerospike and Redis
are almost the same in these two workload scenarios as shown in
Figure 2(a) and 2(b).

Interestingly in write-heavy workload scenario, the throughput of
Memcached is 1.1 - 1.6x less than the average of Redis and
Aerospike’s throughputs. Aerospike does a better job (up to 19k
ops/sec more) than Redis. We attribute this to data storage
mechanism that varies among systems. In memcached, the
concept of reusing slab is introduced. Redis does not provide
detailed explanations on managing the hash-table and storage

mechanism on their documentation. Aerospike, on the other hand,
has a storage layer designed for optimization when flash memory
used as backend storage. Aerospike models the data with the
concept of namespaces, sets, and records as delineated in [6].

In the 1 client setting (single node), Redis and Aerospike
outperform Memcached across the three workloads. The highest
throughput is in the case of the write-heavy workload with
Aerospike database with 93,334 operations-per-second. It can be
observed that Memcached attains its peak performance at 24
clients for both write heavy and balanced workloads and gradually
decreases as more concurrent clients are added.
4.1.2 Latency Analysis
Figure 3 show that Memcached maintains a 0.6 - 2.9x lower read
latency compared with the other two databases for read-heavy and
balanced workloads. On the other hand, Redis has a slightly
higher latency compared with Aerospike. Although Aerospike
server is configured to run 4 threads, it is interesting that the
performance is not similar to that of Memcached. We attribute
this to the Client

4

Figure 4: Throughput Analysis in Cluster mode

Figure 5 : Read Latency Analysis in Cluster mode

Figure 6 : Write Latency Analysis in Cluster mode

Layer that performs node-check and other more complicated
features that Aerospike adds to detect faulty nodes.
The lowest read latency for redis is 195.4 μs that can be observed
in 1 client setting in read-only workload. For memcached, the
lowest is 170 μs found in 1 client in write-heavy workload. For
Aerospike, the lowest read latency is 180 μs also seen in 1 client
setting in read-heavy workload. These results suggest that there is
significant overhead for the database server to handle and process
queries coming from more than 1 client. Lastly, as expected
theoretically, Redis’s single-threaded design leads to lower
performance compared to Memcached that implement
multi-threaded event-loops.

Compared with the read latency, the trend in write latency is
identical for read-heavy and balanced workloads with Memcached
as the lowest latency system after more than 4 clients
configuration. In our opinion, it should be attributed to the
multi-threaded architecture of the database.

4.2 Cluster Mode
The memory capacity of a single machine could easily run out
when it comes to storing the whole dataset into memory. Thus,
one of the important reasons for clustering is the ability to
partition the dataset into several independent machines without
giving up performance or even with speed-up of concurrent
processing across machines.

4.2.1​ Throughput Analysis

Figure 4 shows the throughput of the three databases under three
different workloads as mentioned in Section 3.2.2. Similar to the
result in single node scenario, Memcached’s throughput is the
most noticeable in both read-heavy workload, reaching slightly
more than 2.5x that of Redis and Aerospike. We attribute this to
the design principle of memcached to only support simple fast
commands and does not support complex data types and
commands. The fact that each database handles concurrency
control uniquely may also lead to different throughputs.

5

 ​Table 2 : Average Memory Consumption of Each Machine in Cluster mode

 Redis (MB) Memcached (MB) Aerospike (MB)

Workload Before Run After Run Before Run After Run Before Run After Run

Read Heavy 3,356 3,361 2,832 3,082 2,988 2,992

Balanced 3,355 3,360 2,830 3,134 2,990 2,992

Write Heavy 3,356 3,361 2,831 3,135 2,989 2,988

In write-heavy workload, It is also worthwhile to note that while
Memcached maintains consistent throughput, interestingly Redis
and Aerospike outdo Memcached by 1.2 - 2.2x. Similar to the
single node case, we attribute this to different the underlying
storage management system.

In cluster setting, Redis achieves its stable throughput around
14.9k ops/sec in read-heavy workload with 16-32 concurrent
clients; around 27.7k ops/sec in balanced workload with 16-32
concurrent clients; and about 96,962 ops/sec in write-heavy
workload with 32 concurrent clients connected. Memcached gains
its best throughput 40,6k ops/sec in read-heavy workload with 32
clients; 54,6k ops/sec in balanced-workload with 24 clients and
starts dropping when the number of clients is increased; 56k
ops/sec in write-heavy with 20 clients​.
4.2.2 Latency Analysis
As shown in Figures 4 and 5, the relationship between throughput
and latency of the system is roughly inversely proportional.
Hence, similar reasoning can be applied to explain the figures. For
instance, Memcached which yields the highest throughput and the
lowest latency in read-heavy and balanced workload.

In Figure 4 and 5, case (a) and (b), memcached manages to have
significant lower latency in both read and write latencies
relatively to the other two systems. The case (c) in Figure 6 shows
that write latency of Memcached stands out among the three
systems. However, compared with that in the single node, the
write latency of Memcached is only slightly lower. Whereas
Redis’s write latency decreases by up to 130 μs and Aerospike’s
write latency decreases by up to 40.5 μs.

The above observation shows that memcached is having
significantly lower latency in read-heavy and balanced workload
and having higher latency in write-heavy latency suggests us to
attribute this to the fact that Memcached is designed for caching
purpose only. It does not have features related to keeping data
persistence or having a secondary persistent storage. Whereas in
Aerospike and Redis, they need to take care of replication and
consistency issues in the code. This implies that supporting other
features might degrade the performance.

4.3 Memory Analysis in Cluster Mode
Understanding the memory used to store the dataset as well as to
run the DB server and other bookkeeping works (indexing, hash
table, etc) is important before adopting an in-memory database.
The free command is used to measure the amount of memory
consumed in our test machines in three states: before YCSB loads
the dataset, after the loading and after running the benchmark. We
have provided the results in Table 2. The results provided are an
average of memory required across the tree machines. It can be
seen that Memcached consumes less memory compared to Redis

and Aerospike. On the average of each of the three machines in
the cluster, Redis consumes about 3,356 MB after loading the
database and about 3,651 MB after serving the database. It is the
highest among all the databases compared. The smallest memory
footprint achieved by Memcached that consumes about 3,000 MB
on average at each machine to serve the database

5 EXPERIENCES

5.1 Redis
Redis has a huge user base and a very good documentation policy.
It made our job very easy. The Server installation and
configuration is pretty straight forward. The default configuration
is almost the best configuration for most of the use cases. We
were able to find the architecture documents and possible use
cases without much difficulties. The use cases are also provided
with sample codes on the project’s website. It also has a wide
range of client libraries for various languages. YCSB uses Jedis, a
Java library of Redis.

Finally, Redis has excellent usability because of the presence of
strong monitoring capabilities and inbuilt commands which
helped create an ecosystem of tools around it.

5.2 Memcached
Installing and running Memcached is very simple. Although we
could also build from the provided source code, we chose to
install via Advanced Package Tool (apt) repositories. Compared
with the other two DBs, the configuration file in Memcached is
very short (less than 50 lines). It also has the stats command
which returns the statistic regarding memory and storage details.

In terms of the technical documentation, Memcached has a wiki
page that encompasses all the resources including the system
overview; details of the protocol; configuration for client, server,
cluster; and other related documents which are very helpful.

In terms of interoperability, we did not encounter any issue
between the client library implemented in YCSB and the latest
Memcached server both in single node and cluster setups.

5.3 Aerospike
At the beginning, we thought that Aerospike open source version
would not be easy to configure and be limited in the features.
However, it turned out that it has a very organized instruction on
how to install and what features are different between the
enterprise and open source version.

It is properly documented in terms of the details of
implementation and architecture. There is also one research paper
published in VLDB 2011 by Aerospike’s developers in the early
stage of the development of the DB [6].

6

Aerospike also has a very good monitoring console/tool, such as
asadm​ , ​asinfo​ , etc that provide us a good status overview of the
running Aerospike server (e.g. number of nodes connected in a
cluster, memory usage for each node, the IP address of each node,
number of keys , and replication status). Whereas in Redis or
memcached, the information related to monitoring or system
status are dumped into log files.

5.4 Other Databases Considered
NoSQL databases are the trending database type now. Many new
NoSQL databases are developed in the recent years and many of
them have grown to rival the well established SQL based
databases.

Riak is considered for benchmarking against Memcached and
Redis but the performance of Riak is very low in single and
cluster mode and hence it is dropped from this benchmarking
project. Riak consumes a lot of memory compared to Redis to
store the same amount of data and probably slowing down the
entire system.

MongoDB is another NoSQL system which has garnered a lot of
respect from developers. It is recommended to setup MongoDB
with one replica per machine and requires config servers setup
along with the sharded database server. Hence the idea to compare
MongoDB with Redis and Memcached is dropped to be fair in
benchmarking.

Cassandra is categorized under Wide-column store family of
NoSQL databases. Although there are certain hacks use this
database as a key-value store it is not an ideal choice for a
key-value store. Moreover, there is no first class in-memory
backed storage engine support making the database slow
compared to Redis and Memcached.

6 RELATED WORK
Similar work aiming to examine a number of SQL and NoSQL
data store has been done by Rick Cattell in 2011 and published in
ACM SIGMOD Record [11]. This paper focuses on examining
the databases based on their data model, consistency mechanism,
durability guarantee and other dimensions.

Other has tried to instrument throughput of VoldemortDB, Redis,
and other DBs in the context of application performance
monitoring (APM) for big data. In such context, there are
scanning operations involved [12].

A number of benchmarking results against Redis and Memcached
have been done previously by different people. Sys/admin [13]
released an article in 2010 discussing Redis and Memcached
performance that stress the system internals by varying key and
value size. Salvatore Sanfilippo (the founder or Redis) released
comparison results in 2010 [14] [16] to counter the results
released by sys/admin. In his results, he considers multiple clients
instead of one single client and also comparing Memcached
running with 2 threads on two cores with two Redis servers
running on two cores. Dormando (2010) also released the
comparison of the two DBs with different client configuration
[15]. The results are depending on the configuration and how
clients generate the requests.

Another related work that has been done is examining
Memcached under multi-threaded access scenarios [17].

7 CONCLUSION
Choosing the proper in-memory key-value stores is becoming
more important as they are very helpful in reducing the latency of

requests and can be used to store the whole database. To this end,
we presented a thorough empirical comparison of three
in-memory key-value stores: Redis, Memcached, and Aerospike
benchmarked using three different kinds of workloads
(read-heavy, balanced, and write-heavy) with a variable number
of concurrent clients initiated by YCSB. The benchmark is done
in single node and cluster settings.

We observed that Memcached is the best system in the tested
key-value stores when it is used as caching layer. In other words,
the practical use-cases of in-memory key-value stores are mostly
read-heavy and balanced. Thus, based on our experimental results,
Memcached yields the best performance in those cases. The
performance of Redis and Aerospike is very close to each other,
but the memory footprint of Redis is higher. Thus, we nominate
Aerospike to be the second best system.

However, if the use-case is mostly single client and requires
complex value types as well as longer value and key size, Redis is
a better option compared to Memcached and Aerospike.

8 ACKNOWLEDGEMENTS
We would like to thank Professor Khuzaima Daudjee for his
guidance and helpful comments and University of Waterloo for
providing the infrastructure to benchmark the databases.

9 REFERENCES
[1] DB-Engines. DB-Engines Ranking. Retrieved December 8,

2016 from ​http://db-engines.com/en/ranking/key-value store

[2] Redis. Introduction to Redis. Retrieved December 8, 2016
from​ https://redis.io/topics/introduction

[3] Dormando. memcached - a distributed memory object
caching system. Retrieved December 8, 2016 from
http://www.memcached.org/

[4] What is it Made Up Of?:
https://github.com/memcached/memcached/wiki/Overview#
what-is-it-made-up-of. Accessed: 2016-12-08​.

[5] Aerospike Frequently Asked Questions (FAQ):
http://www.aerospike.com/docs/guide/FAQ.html. ​Accessed:
2016-12-08​.

[6] Bulkowski, B., & Srinivasan, V. 2011. Citrusleaf: A
Real-Time NoSQL DB which Preserves ACID. PVLDB, 4,
1340-1350.
DOI=​http://www.vldb.org/pvldb/vol4/p1340-srinivasan.pdf

[7] Yahoo! Cloud Serving Benchmark (YCSB):
https://github.com/brianfrankcooper/YCSB/wiki. Accessed:
2016-12-08.

[8] Ycsb-kvstore-comparison: 2016.
https://github.com/anthonyaje/ycsb-kvstore-comparison.
Accessed: 2016-12-08.

[9] Cooper, B.F. et al. 2010. Benchmarking cloud serving
systems with YCSB. Proceedings of the 1st ACM
symposium on Cloud computing - SoCC '10. (2010).

[10] Memory Prices (1957-2016):
http://www.jcmit.com/memoryprice.htm​. Accessed:
2016-12-08.

[11] Cattell, R. 2011. Scalable SQL and NoSQL data stores.
ACM SIGMOD Record. 39, 4 (Jun. 2011), 12.

[12] Rabl, T. et al. 2012. Solving big data challenges for
enterprise application performance management.

7

http://db-engines.com/en/ranking/key-value
https://redis.io/topics/introduction
http://www.memcached.org/
https://github.com/memcached/memcached/wiki/Overview#what-is-it-made-up-of.
https://github.com/memcached/memcached/wiki/Overview#what-is-it-made-up-of.
http://www.aerospike.com/docs/guide/FAQ.html.
http://www.aerospike.com/docs/guide/FAQ.html.
http://www.aerospike.com/docs/guide/FAQ.html.
http://www.vldb.org/pvldb/vol4/p1340-srinivasan.pdf
https://github.com/brianfrankcooper/YCSB/wiki.
https://github.com/brianfrankcooper/YCSB/wiki.
https://github.com/anthonyaje/ycsb-kvstore-comparison.
https://github.com/anthonyaje/ycsb-kvstore-comparison.
http://www.jcmit.com/memoryprice.htm

Proceedings of the VLDB Endowment. 5, 12 (Jan. 2012),
1724–1735.

[13] Redis vs Memcached: 2010.
https://systoilet.wordpress.com/2010/08/09/redis-vs-memcac
hed​. Accessed: 2016-12-08.

[14] On Redis, Memcached, Speed, Benchmarks and The Toilet:
2010
http://oldblog.antirez.com/post/redis-memcached-benchmark
.html​. Accessed: 2016-12-08.

[15] Redis VS Memcached (slightly better bench): 2010.
http://dormando.livejournal.com/525147.html​. Accessed:
2016-12-08.

[16] An update on the Memcached/Redis benchmark: 2010.
http://oldblog.antirez.com/post/update-on-memcached-redis-
benchmark.html​. Accessed: 2016-12-08.

[17] Stjepanovic, D. et al. 2015. Performance measurements of
some aspects of multi-threaded access to key-value stores.
2015 23rd Telecommunications Forum Telfor (TELFOR).
(2015).

[18] twitter/twemcache: 2015.
https://github.com/twitter/twemcache​. Accessed:
2016-12-08.

[19] How Zynga Survived FarmVille: 2010.
https://gigaom.com/2010/06/08/how-zynga-survived-farmvill
e/.​ Accessed: 2016-12-08.

[20] Who's using Redis?: ​https://redis.io/topics/whos-using-redis​.
Accessed: 2016-12-08

[21] NoSQL Examples | NoSQL Use Cases | Aerospike:
http://www.aerospike.com/customers/​. Accessed:
2016-12-08

[22] Aerospike, Memcached and Redis comparision:
http://db-engines.com/en/system/Aerospike;Memcached;Red
is​. Accessed: 2016-12-08

[23] Marissa Mayer at Web 2.0: 1970
http://glinden.blogspot.ca/2006/11/marissa-mayer-at-web-20.
html​ Accessed: 2016-12-08

8

https://systoilet.wordpress.com/2010/08/09/redis-vs-memcached
https://systoilet.wordpress.com/2010/08/09/redis-vs-memcached
http://oldblog.antirez.com/post/redis-memcached-benchmark.html
http://oldblog.antirez.com/post/redis-memcached-benchmark.html
http://dormando.livejournal.com/525147.html
http://oldblog.antirez.com/post/update-on-memcached-redis-benchmark.html
http://oldblog.antirez.com/post/update-on-memcached-redis-benchmark.html
https://github.com/twitter/twemcache
https://redis.io/topics/whos-using-redis
http://www.aerospike.com/customers/
http://db-engines.com/en/system/Aerospike;Memcached;Redis
http://db-engines.com/en/system/Aerospike;Memcached;Redis
http://glinden.blogspot.ca/2006/11/marissa-mayer-at-web-20.html.
http://glinden.blogspot.ca/2006/11/marissa-mayer-at-web-20.html.

